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The Protagonists

Szegő Limit Theorem (1915)
Let w ∈ C1(T) be positive, with Fourier coefficients

wn :=
1
2π

∫ 2π

0
w(θ)e−inθ dθ.

Define the Toeplitz matrices

Tn :=


w0 w1 w2 · · · wn
w−1 w0 w1 · · · wn−1
w−2 w−1 w0 · · · wn−2
...

...
...

...
...

w−n w−n+1 w−n+2 · · · w0

 .

Then,

lim
n→∞

(det Tn)
1
n = exp

(
1
2π

∫ 2π

0
log(w(θ))dθ

)
.
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The Protagonists II

Connes’ Integral Formula (1988)
Let (M,g) be a d-dimensional compact orientable Riemannian
manifold. Then for any Dixmier trace Trω ,

Trω(Mf(1−∆g)
− d

2 ) = Cd
∫
M
f dνg, f ∈ C∞(M),

where ∆g is the Laplace–Beltrami operator, νg the Riemannian
volume form, and Cd a constant depending on the dimension d.
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Summary of this talk

1. 1915: Szegő’s limit theorem

2. 1979: Widom’s argument

3. 1988: Connes’ integral formula

4. 2025 (I): Noncommutative Szegő limit theorem

5. 2025 (II): NCG and Quantum Ergodicity

This talk is based on joint work with Edward McDonald (Université
Paris-Est Créteil).
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Part 1: 1915



Toeplitz Matrices

Let {en}n∈Z be the standard basis of L2(T). The matrix elements of
the multiplication operator Mw are

〈en,Mwem〉 =
1
2π

∫ 2π

0
e−inθw(θ)eimθ dθ = wn−m.

The matrix elements of Tn are also of the form wm−n.

We therefore have
Tn = PnMwPn,

where where Pn is the orthogonal projection in L2(T) onto the
Fourier modes {e0, e1, . . . , en}.

4



Toeplitz Matrices

Let {en}n∈Z be the standard basis of L2(T). The matrix elements of
the multiplication operator Mw are

〈en,Mwem〉 =
1
2π

∫ 2π

0
e−inθw(θ)eimθ dθ = wn−m.

The matrix elements of Tn are also of the form wm−n.

We therefore have
Tn = PnMwPn,

where where Pn is the orthogonal projection in L2(T) onto the
Fourier modes {e0, e1, . . . , en}.

4



Reworking Szegő’s theorem

Szegő’s limit theorem gives

lim
n→∞

(det Tn)
1
n = exp

(
1
2π

∫ 2π

0
log(w(θ))dθ

)
.

We have

log(det(T)) = log

( ∏
λj∈σ(T)

λj

)
=

∑
λj∈σ(T)

log(λj) = Tr(log(T)),

hence a different way to put Szegő’s theorem is

1
n+ 1Tr(log(PnMwPn))

n→∞−−−→ 1
2π

∫ 2π

0
log(w(θ))dθ,

where Pn is the orthogonal projection in L2(T) onto the Fourier
modes {e0, e1, . . . , en}.
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Szegő’s limit theorem v2

In fact, Szegő proved a stronger statement.

Szegő’s limit theorem (1915)
For 0 < w ∈ C1(T),

1
n+ 1Tr(f(PnMwPn))

n→∞−−−→ 1
2π

∫ 2π

0
f(w(θ))dθ, f ∈ C(R).
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Truncated Spectral Triples

Spoiler warning!

If we have a spectral triple (A,H,D), lots of noncommutative
geometers are interested in truncated triples (PAP,PH,PD), where
e.g. P := χI(D) a finite-rank spectral projection (e.g. Connes–van
Suijlekom, D’Andrea–Lizzi–Martinetti).

Note that PAP is no longer an algebra: it is in general not closed
under products. Instead, it is an operator system.

7



Truncated Spectral Triples

Spoiler warning!

If we have a spectral triple (A,H,D), lots of noncommutative
geometers are interested in truncated triples (PAP,PH,PD), where
e.g. P := χI(D) a finite-rank spectral projection (e.g. Connes–van
Suijlekom, D’Andrea–Lizzi–Martinetti).

Note that PAP is no longer an algebra: it is in general not closed
under products. Instead, it is an operator system.

7



Truncated Spectral Triples

Spoiler warning!

If we have a spectral triple (A,H,D), lots of noncommutative
geometers are interested in truncated triples (PAP,PH,PD), where
e.g. P := χI(D) a finite-rank spectral projection (e.g. Connes–van
Suijlekom, D’Andrea–Lizzi–Martinetti).

Note that PAP is no longer an algebra: it is in general not closed
under products. Instead, it is an operator system.

7



The Game

An interesting program in NCG is to determine what information
about the triple (A,H,D) can be recovered from the operator system
spectral triple (PAP,PH,PD), in particular as P ↑ 1.

Actively studied open questions:

• Under what conditions does the state space of PAP equipped
with the Connes distance (analogous to Wasserstein 1 metric)
converge as a metric space to the state space of A as P ↑ 1?

• Can we recover the K-theory of (A,H,D) from its truncations?
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Szegő’s limit theorem v2 again

In this light and in this form, Szegő’s limit theorem looks promising.

Szegő’s limit theorem (1915)
For 0 < w ∈ C1(T),

1
n+ 1Tr(f(PnMwPn))

n→∞−−−→ 1
2π

∫ 2π

0
f(w(θ))dθ, f ∈ C(R).
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Part 2: 1979



Widom’s formula

In the 1970s, Szegő’s formula received renewed attention, due to the
emergence of the field of Quantum Ergodicity. Widom managed to
generalise the formula to manifolds.

Widom’s Szegő’s limit theorem (1979)
Let (M,g) be a compact Riemannian manifold, w ∈ C∞(M)
real-valued. Then

Tr(f(PλMwPλ))
Tr(Pλ)

λ→∞−−−−→ 1
vol(M)

∫
M
f(w(x))dνg(x), f ∈ C(R),

where Pλ = χ[−λ,λ](∆g). Furthermore, for A ∈ Ψ0(M) self-adjoint
with principal symbol σ0(A),

Tr(f(PλAPλ))
Tr(Pλ)

λ→∞−−−−→ 1
vol(S∗M)

∫
S∗M

f(σ0(A))dµ, f ∈ C(R).
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Idea

Widom’s proof is quite short.

• The first step is to prove the case where f(x) = x, i.e.

Tr(PλAPλ)
Tr(Pλ)

λ→∞−−−−→ 1
vol(S∗M)

∫
S∗M

σ0(A)dµ,

which is in fact the microlocal Weyl law.

• The next step is to do polynomials, by proving that

Tr((PλAPλ)n − PλAnPλ)
Tr(Pλ)

λ→∞−−−−→ 0.
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Microlocal Weyl law

Weyl’s law gives for a compact Riemannian manifold (M,g),

Tr(Pλ) ∼ Cd vol(M)λ
d
2 , λ → ∞.

There exists a local version of Weyl’s law, which gives for f ∈ C∞(M),

Tr(MfPλ) =
N(λ)∑
n=0

〈en,Mfen〉 ∼ Cdλ
d
2

∫
M
f dνg, λ → ∞.

Or, even, a microlocal Weyl law, which states for A ∈ Ψ0(M),

Tr(APλ) =
N(λ)∑
n=0

〈en,Aen〉 ∼ Cdλ
d
2

∫
S∗M

σ0(A)dµ, λ → ∞.
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Part 3: 1988



Dixmier traces

Let H be a Hilbert space. An eigenvalue sequence of a compact
operator A ∈ K(H) is a sequence {λ(k,A)}k∈N of the eigenvalues of A
listed with multiplicity, such that {|λ(k,A)|}k∈N is non-increasing.

The usual operator trace Tr can be characterised for trace class
operators A ∈ L1 ⊂ K(H) as

Tr(A) = lim
n→∞

n∑
k=1

λ(k,A).

The Dixmier trace is defined on so-called weak trace class operators
A ∈ L1,∞ ⊂ K(H) by

Trω(A) = ω- lim
n→∞

1
log(2+ n)

n∑
k=1

λ(k,A),

where ω ∈ ℓ∞(N)∗ is an extended limit. Note that L1 ⊂ L1,∞, but if
A ∈ L1, Trω(A) = 0.
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Connes’ integral formula

Connes proved the following.

Connes’ Integral Formula
Let (M,g) be a compact Riemannian manifold, f ∈ C∞c (M). Then for
any Dixmier trace Trω ,

Trω(Mf(1−∆g)
− d

2 ) = Cd
∫
M
f dνg.

Or stronger, for A ∈ Ψ0
cl(M),

Trω(A(1−∆g)
− d

2 ) = Cd
∫
S∗M

σ0(A)dµ.

Connes’ result is in fact even stronger, as he does not assume a
Riemannian structure.
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Part 4: 2025 (I)



Comparison

Now compare the first step in Widom’s proof, the microlocal Weyl law
Tr(PλAPλ)

Tr(Pλ)
λ→∞−−−−→ 1

vol(S∗M)

∫
S∗M

σ0(A)dµ,

with Connes’ formula

Trω(A(1−∆)−
d
2 ) = Cd

∫
S∗M

σ0(A)dµ.

H.–McDonald
Let H be a separable Hilbert space, A ∈ B(H), D self-adjoint with
compact resolvent, Pλ := χ[−λ,λ](D). If D satisfies Weyl’s law
λ(k, |D|) ∼ Ck 1

d , then for all Dixmier traces Trω ,

Trω(A(1+ D2)− d
2 )

Trω((1+ D2)− d
2 )

= ω ◦M
(

Tr(PλnAPλn)
Tr(Pλn)

)
.

Here, M : ℓ∞ → ℓ∞ is the logarithmic averaging defined by
M(x)n = 1

log(n+2)
∑n

k=0
xk
k .
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Truncated Spectral Triples

Our result shows that if (A,H,D) is d-dimensional and D satisfies
Weyl’s law, then

PλAPλ 7→ Tr(PλAPλ)
Tr(Pλ)

is a reasonable approximation of the noncommutative integral
Trω(A(1+ D2)− d

2 ).
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Noncommutative Szegő theorem

With Widom’s argument, we have a Szegő formula for NCG as well.

H.–McDonald
Let H be a separable Hilbert space, A ∈ B(H)sa, D self-adjoint with
compact resolvent. If D satisfies Weyl’s law λ(k, |D|) ∼ Ck 1

d , and if
[D,A] extends to a bounded operator, then for all Dixmier traces
Trω ,

Trω(f(A)(1+ D2)− d
2 )

Trω((1+ D2)− d
2 )

= ω ◦M
(

Tr(f(PλnAPλn))
Tr(Pλn)

)
, f ∈ C(R).

In case the spectral triple has local Weyl laws, i.e. Tr(aPλ) ∼ C(a)λ d
2

for all a ∈ A, we have

Trω(f(a)(1+ D2)− d
2 )

Trω((1+ D2)− d
2 )

= lim
λ→∞

Tr(f(PλaPλ))
Tr(Pλ)

, f ∈ C(R).
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Noncommutative Szegő theorem

In particular, in this setting we recover Szegő’s limit theorem

exp

(
Trω(log(a)(1+ D2)− d

2 )

Trω((1+ D2)− d
2 )

)
= lim

λ→∞
(det(PλaPλ))Tr(Pλ), 0 < a ∈ A.
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Part 5: 2025 (II)



Quantum Ergodicity

The result by Szegő was studied by Widom in the context of Quantum
Ergodicity.

This field studies a quantum mechanical analogue of ergodicity. A
one-particle system described by an operator H on L2(M) is called
quantum ergodic if the high energy states of H are ‘smeared’ over M.

19



Quantum Ergodicity

The result by Szegő was studied by Widom in the context of Quantum
Ergodicity.

This field studies a quantum mechanical analogue of ergodicity. A
one-particle system described by an operator H on L2(M) is called
quantum ergodic if the high energy states of H are ‘smeared’ over M.

19



Picture

Figure 1: Eigenfunctions of the
Laplacian on a rose-shaped domain,
quantum ergodicity unknown.

Figure 2: Eigenfunctions of the
Laplacian on the disc, not quantum
ergodic.
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QE, rigorously

Quantum Ergodicity
For a compact Riemannian manifold M and a positive self-adjoint
operator ∆ on L2(M) with compact resolvent, ∆ is said to be
quantum ergodic if for every orthonormal basis {en}∞n=0 of L2(M)
consisting of eigenfunctions of ∆, there exists a density one
subsequence J ⊆ N such that

lim
J∋j→∞

〈ej,Aej〉L2(M) →
1

vol(S∗M)

∫
S∗M

σ0(A)dµ, A ∈ Ψ0(M),

where ν is a probability measure on M. In this context, a density
one subsequence means that

#(J ∩ {0, . . . ,n})
n+ 1 → 1, n→ ∞.
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QE as a Weyl law

We can interpret Quantum Ergodicity as a stronger microlocal Weyl
law. Namely, the QE property

lim
J∋j→∞

〈ej,Aej〉L2(M) →
1

vol(S∗M)

∫
S∗M

σ0(A)dµ, A ∈ Ψ0(M),

is equivalent by the Koopman–von Neumann lemma to

lim
N→∞

1
N+ 1

N∑
n=0

∣∣∣∣〈en,Aen〉 − 1
vol(S∗M)

∫
S∗M

σ0(A)dµ
∣∣∣∣ = 0, A ∈ Ψ0(M).

This is now recognisable as a stronger version of the microlocal Weyl
law

lim
N→∞

1
N+ 1

N∑
n=0

〈en,Aen〉 −
1

vol(S∗M)

∫
S∗M

σ0(A)dµ = 0, A ∈ Ψ0(M).
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Geodesic flow

Let (M,g) be a Riemannian manifold, and denote by SM ⊆ TM the
tangent vectors of length 1. Then we define the geodesic flow

Gt : SM→ SM, t ∈ R,

in the usual way. By duality, we can likewise define Gt : S∗M→ S∗M,
where S∗M ⊆ T∗M.

The geodesic flow is said to be ergodic if for every measurable
function f ∈ L∞(S∗M) which is fixed by the flow (i.e. f ◦ Gt = f almost
everywhere), it must be that f is constant almost everywhere.
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Fundamental theorem of QE

The fundamental theorem that started the field of Quantum
Ergodicity is the following.

Theorem (Shnirelman 1974, Zelditch 1987, Colin de Verdière 1985)
Let M be a compact Riemannian manifold. If the geodesic flow on M
is ergodic, then the Laplace–Beltrami operator ∆g is quantum
ergodic.

By now, various extensions of this theorem exist. The common
thread is to study geodesic flow, and translate this into asymptotic
behaviour of eigenfunctions of an operator.
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Noncommutative geodesic flow

Connes defined geodesic flow on spectral triples in 1996.

Noncommutative cosphere bundle
Let (A,H,D) be a regular spectral triple. Let σt : B(H) → B(H) be
defined by A 7→ eit|D|Ae−it|D|. Then define the C∗-algebra

S∗A := C∗
( ⋃
t∈R

σt(A) + K(H)

)/
K(H),

where σt descends to an action of R on S∗A. If
(A,H,D) ' (C∞(M), L2(S),DS), then S∗A ' C(S∗M) and σt is the
geodesic flow.

25



NCG ergodicity

Since ergodicity of the geodesic flow is a measure theoretic
statement, we need to take one more step.

L2-cosphere bundle
Let (A,H,D) be a regular spectral triple where D satisfies Weyl’s
law. Then

τ(A+ K(H)) =
Trω(A(1+ D2)− d

2 )

Trω((1+ D2)− d
2 )

, A+ K(H) ∈ S∗A,

defines a finite positive trace on S∗A. Then define L2(S∗A) as the
Hilbert space of the GNS representation of S∗A corresponding to τ .

The geodesic flow σt on S∗A descends to a unitary operator on
L2(S∗A).
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NCG QE

We can now naively put forward a definition of ergodic geodesic flow
for spectral triples. Namely, we say that the geodesic flow σt is
ergodic on (A,H,D) if the only σt-invariant element of L2(S∗A) is the
identity.

NCG QE (H.–McDonald)
Let (A,H,D) be a d-summable regular spectral triple where D
satisfies Weyl’s law, and with local Weyl laws. If the geodesic flow
on (A,H,D) is ergodic, then D is quantum ergodic. That is, for every
basis {en}∞n=0 of H consisting of eigenvectors of D, there exists a
density one subset J ⊆ N such that

lim
J∋j→∞

〈ej,aej〉 =
Trω(a(1+ D2)− d

2 )

Trω((1+ D2)− d
2 )

, a ∈ A.
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Thanks

Thanks for listening!
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