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The Protagonists

Szeg6 Limit Theorem (1915)
Let w € C'(T) be positive, with Fourier coefficients
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The Protagonists I

Connes’ Integral Formula (1988)
Let (M, g) be a d-dimensional compact orientable Riemannian
manifold. Then for any Dixmier trace Tr,,,

Tro, (Ms(1 ng)*%):Cd/Mfdyg, fe (M),

where Ay is the Laplace-Beltrami operator, 4 the Riemannian
volume form, and C, a constant depending on the dimension d.



Summary of this talk

1. 1915: Szegd's limit theorem

2. 1979: Widom's argument

3. 1988: Connes' integral formula

4. 2025 (1): Noncommutative Szeg6 limit theorem

5. 2025 (11): NCG and Quantum Ergodicity

This talk is based on joint work with Edward McDonald (Université
Paris-Est Créteil).



Part 1: 1915



Toeplitz Matrices

Let {e,}nez be the standard basis of Ly(T). The matrix elements of
the multiplication operator M,, are

1 27 . )
<em Mwem> = Z / ei)n‘gW(a)e(me do = wp_n.
J0O

The matrix elements of T, are also of the form wp,_.



Toeplitz Matrices

Let {e,}nez be the standard basis of Ly(T). The matrix elements of
the multiplication operator M,, are

1 27 . )
<em Mwem> = Z / ei)n‘gW(a)e(me do = wp_n.
J0O

The matrix elements of T, are also of the form wp,_.

We therefore have
Tn — Pﬂwan-,

where where P, is the orthogonal projection in L,(T) onto the
Fourier modes {eg, e1,...,en}.
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Szegd's limit theorem gives
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Reworking Szegd’s theorem

Szegd's limit theorem gives

nILmOO(det Tn)% = exp (2171- /027r log(w(#)) dH).

We have

log(det(T)) = Iog( H ) Z log(\) = Tr(log(T)),

Nea(T) Nea(T

hence a different way to put Szegd’s theorem is

1 o 1 27
~— Tr(log(PaMuPn)) === 5— | /O log(w(6)) df,

where P, is the orthogonal projection in L,(T) onto the Fourier
modes {eg,e1,...,€en}.



Szegd's limit theorem v2

In fact, Szegd proved a stronger statement.

Szegd's limit theorem (1915)
For 0 < w e CY(T),

1 21

T(f(PaMaPr)) 2 5 [ fM@) 08, S € C(R).
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If we have a spectral triple (A, H, D), lots of noncommutative
geometers are interested in truncated triples (PAP, PH, PD), where
e.g. P:= xi(D) a finite-rank spectral projection (e.g. Connes-van
Suijlekom, D’Andrea-Lizzi-Martinetti).



Truncated Spectral Triples

Spoiler warning!

If we have a spectral triple (A, H, D), lots of noncommutative
geometers are interested in truncated triples (PAP, PH, PD), where
e.g. P:= xi(D) a finite-rank spectral projection (e.g. Connes-van
Suijlekom, D’Andrea-Lizzi-Martinetti).

Note that PAP is no longer an algebra: it is in general not closed
under products. Instead, it is an operator system.



An interesting program in NCG is to determine what information
about the triple (A, #H, D) can be recovered from the operator system
spectral triple (PAP, PH, PD), in particular as P 1 1.
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with the Connes distance (analogous to Wasserstein 1 metric)
converge as a metric space to the state space of A as P 11?7



An interesting program in NCG is to determine what information
about the triple (A, #H, D) can be recovered from the operator system
spectral triple (PAP, PH, PD), in particular as P 1 1.

Actively studied open questions:
- Under what conditions does the state space of PAP equipped

with the Connes distance (analogous to Wasserstein 1 metric)
converge as a metric space to the state space of A as P 11?7

- Can we recover the K-theory of (A, #H, D) from its truncations?



Szegd's limit theorem v2 again

In this light and in this form, Szegd's limit theorem looks promising.

Szeg@'s limit theorem (1915)
For 0 < w € C'(T),

1 27
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Widom's formula

In the 1970s, Szegd's formula received renewed attention, due to the
emergence of the field of Quantum Ergodicity. Widom managed to
generalise the formula to manifolds.



Widom's formula

In the 1970s, Szegd's formula received renewed attention, due to the
emergence of the field of Quantum Ergodicity. Widom managed to
generalise the formula to manifolds.

Widom’s Szegé's limit theorem (1979)
Let (M, g) be a compact Riemannian manifold, w € C>(M)
real-valued. Then

Tr(f(PAxMwPx)) oo
TI‘(P)\) VO| /f dVg I ]’:G C(R)a

where Py = X[,AN(AQ).



Widom's formula

In the 1970s, Szegd's formula received renewed attention, due to the
emergence of the field of Quantum Ergodicity. Widom managed to
generalise the formula to manifolds.

Widom’s Szegé's limit theorem (1979)
Let (M, g) be a compact Riemannian manifold, w € C>(M)
real-valued. Then

Tr(f(PAxMwPx)) oo
TI‘(P)\) VO| /f dVg I ]’:G C(R)a

where Py = x[_x,n(Ag). Furthermore, for A € Wo(M) self-adjoint
with principal symbol aq(A),

Tl“(f(P)\AP)\)) A— 00
Tr(Py) vol(S*M

| /S  fooW)dp, feC(R)



Widom's proof is quite short.
- The first step is to prove the case where f(x) = x, i.e.

TT(P)\AP)\) A— 00 1
Tr(Py) vol(S*M) / AOLE

which is in fact the microlocal Weyl law.

1



Widom's proof is quite short.
- The first step is to prove the case where f(x) = x, i.e.

TT(P)\AP)\) A— 00 1
Tr(Py) vol(S*M) / AOLE

which is in fact the microlocal Weyl law.

- The next step is to do polynomials, by proving that

Tr((PAAPA)" — PAA"Py) Ao

Tr(Py) 0

1



Microlocal Weyl law

Weyl's law gives for a compact Riemannian manifold (M, g),

d
2
)

Tr(Py) ~ Cgvol(M)A?, A — oo.
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Weyl's law gives for a compact Riemannian manifold (M, g),

d
2
)

Tr(Py) ~ Cgvol(M)A?, A — oo.

There exists a local version of Weyl's law, which gives for f € C°°(M),

N(A)
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Microlocal Weyl law

Weyl's law gives for a compact Riemannian manifold (M, g),

d
2, A= o0.

TI(P)\) ~ Cd VO|(M))\

There exists a local version of Weyl's law, which gives for f € C°°(M),

N(A)
Tr(MPy) = > (en, Myen) ~ CgA? /fdyg, A — o0.
n=0 M

Or, even, a microlocal Weyl law, which states for A € WO(M),

N(A)

Tr(APy) = 3 _{en, Aey) ~ CgA? / oo(A)dp, A — 0.

n=0 JS*M
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Dixmier traces

Let H be a Hilbert space. An eigenvalue sequence of a compact
operator A € K(H) is a sequence {A(R,A)}ren Of the eigenvalues of A
listed with multiplicity, such that {|\(R,A)|}ren IS non-increasing.

The usual operator trace Tr can be characterised for trace class
operators A € £1 C K(H) as

Tr(A) = nleoo z”: A(R,A).
k=1



Dixmier traces

Let H be a Hilbert space. An eigenvalue sequence of a compact
operator A € K(H) is a sequence {A(R,A)}ren Of the eigenvalues of A
listed with multiplicity, such that {|\(R,A)|}ren IS non-increasing.

The usual operator trace Tr can be characterised for trace class
operators A € £1 C K(H) as

Tr(A) = nleoo z”: A(R,A).
k=

The Dixmier trace is defined on so-called weak trace class operators
A€ L1 CK(H) by

_ 1 -
Trw(A) = w-nlem m ; )\(I?,A),

where w € £ (N)* is an extended limit. Note that £4 C £; o, but if
A€ Ly, Tr,(A) = 0. 5



Connes’ integral formula

Connes proved the following.

Connes’ Integral Formula

Let (M, g) be a compact Riemannian manifold, f € C2°(M). Then for
any Dixmier trace Tr,,

Tro,(Mi(1 — Ag)~%) = Cd/Mfdug.

14
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Connes’ integral formula

Connes proved the following.

Connes’ Integral Formula

Let (M, g) be a compact Riemannian manifold, f € C2°(M). Then for
any Dixmier trace Tr,,

Tro,(Mi(1 — Ag)~%) = Cd/Mfdug.

Or stronger, for A € W% (M),

Tro(A(1 = Ag)~%) = G4 /*M oo(A) dp.

Connes' result is in fact even stronger, as he does not assume a

Riemannian structure.
14
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Comparison

Now compare the first step in Widom'’s proof, the microlocal Weyl law
TI"(P,\APA) A—00 1 /
A)d
Tr(Py) VoIS M) Js.,, 70 dbs
with Connes’ formula

Tro(A(1 = A)9) = G, /S*M oo(A) dp.




Comparison

Now compare the first step in Widom'’s proof, the microlocal Weyl law
TI"(P,\APA) A—o00 1 /
A)d
Tr(Py) VoIS M) Js.,, 70 dbs
with Connes’ formula

Tro(A(1 = A)9) = G, /S*M oo(A) dp.

H.-McDonald

Let H be a separable Hilbert space, A € B(H), D self-adjoint with
compact resolvent, Py := x[—x, (D). If D satisfies Weyl's law
A(k, |D|) ~ Cka, then for all Dixmier traces Tr,,

Tr (A + D)%) . (Tr(Px,APs,)
Tro((14D2)~%) M< Tr(P,) )

Here, M : /o, — £ is the logarithmic averaging defined by
M) = W > k=0 *- 15



Truncated Spectral Triples

Our result shows that if (A, H, D) is d-dimensional and D satisfies

Weyl's law, then
TI"(P)\APA)

TT(P)\)
is a reasonable approximation of the noncommutative integral
Tr,(A(1+ D)~ 9).

P)\APA —



Noncommutative Szegé theorem

With Widom'’s argument, we have a Szegé formula for NCG as well.

H.-McDonald

Let H be a separable Hilbert space, A € B(H)sq, D self-adjoint with
compact resolvent. If D satisfies Weyl's law A(k, |D|) ~ Ck3, and if
[D,A] extends to a bounded operator, then for all Dixmier traces
Tr,,

Tro(FA)(1+0°) %) _ o ( Tr(f(PA,APA,))
Trw((1+D2)—%) M( Tr(Py,) )’ fedR).




Noncommutative Szegé theorem

With Widom'’s argument, we have a Szegé formula for NCG as well.

H.-McDonald

Let H be a separable Hilbert space, A € B(H)sq, D self-adjoint with
compact resolvent. If D satisfies Weyl's law A(k, |D|) ~ Ck3, and if
[D,A] extends to a bounded operator, then for all Dixmier traces
Tr,,

Tro(FA)(1+0°) %) _ o ( Tr(f(PA,APA,))
Tro((1+D2)~%) M( Tr(Pa,) )’ fedR)

d
2

In case the spectral triple has local Weyl laws, i.e. Tr(aPy) ~ C(a)A
forall a € A, we have

Tro(f(@)(1+0°)°%) _ | Tr(f(PAaPy))
Tr,((1+ D2)~%) A—oco  Tr(Py)

, felR).



Noncommutative Szeg6 theorem

In particular, in this setting we recover Szegd’s limit theorem

2)-4
e)(p <Trw(|0g(a)(1 + Dd) )> — ||m (det(PAaP)\))TI‘(PA)’ O <ae A
Tr,((1+D?)"2) A—roo
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Quantum Ergodicity

The result by Szegé was studied by Widom in the context of Quantum
Ergodicity.

19



Quantum Ergodicity

The result by Szegé was studied by Widom in the context of Quantum
Ergodicity.

This field studies a quantum mechanical analogue of ergodicity. A
one-particle system described by an operator H on L,(M) is called
quantum ergodic if the high energy states of H are ‘smeared’ over M.

19
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Figure 1: Eigenfunctions of the Figure 2: Eigenfunctions of the
Laplacian on a rose-shaped domain, Laplacian on the disc, not quantum
quantum ergodicity unknown. ergodic.



QE, rigorously

Quantum Ergodicity

For a compact Riemannian manifold M and a positive self-adjoint
operator A on Ly(M) with compact resolvent, A is said to be
quantum ergodic if for every orthonormal basis {e,}52,, of L,(M)
consisting of eigenfunctions of A, there exists a density one
subsequence / € N such that

1
lim (e;,Ae; S A)d A e VoM
)sjlinoo< j A€ L) = vol(S*M) /S*M a0(A) dp, € Vi(m),

where v is a probability measure on M. In this context, a density
one subsequence means that

#(Un{0,...,n})
n+1

—1, n— oo.

21



QE as a Weyl law

We can interpret Quantum Ergodicity as a stronger microlocal Weyl
law. Namely, the QE property

1
lim (ej, Ae; vol(5*M)
Bj.iqoo@, €)M — vol(S*M) .

[ ooaydn, aeweiu)
S*M
is equivalent by the Koopman-von Neumann lemma to

1 N
i

1 ' B 0
<en,A€n> — m /S*M UO(A) dﬂ‘ = O, A€ v (M)

22



QE as a Weyl law

We can interpret Quantum Ergodicity as a stronger microlocal Weyl
law. Namely, the QE property

1 .
lim (e;,Ae; —_— A)du, Aew'(M
]9jli>n00< J J>L2(M) - VO|(5*M) -/S*MJO( ) My ( )a
is equivalent by the Koopman-von Neumann lemma to
N

1
lim —— Aey) —
Nl—>moo N +1 HZO <en’ en>

1 ' B 0

This is now recognisable as a stronger version of the microlocal Weyl
law

N

1 1 :
lim —— Aey) — ———— A)du=0, AecwoM).
e N1 ;fem €n) vol(5*M) /S*MUO( JelpS0, - AEUHE)

22



Let (M, g) be a Riemannian manifold, and denote by SM C TM the
tangent vectors of length 1. Then we define the geodesic flow

Gi:SM — SM, teR,

in the usual way. By duality, we can likewise define G; : S*M — S*M,
where S*M C T*M.

23



Let (M, g) be a Riemannian manifold, and denote by SM C TM the
tangent vectors of length 1. Then we define the geodesic flow

Gi:SM — SM, teR,

in the usual way. By duality, we can likewise define G; : S*M — S*M,
where S*M C T*M.

The geodesic flow is said to be ergodic if for every measurable
function f € Lo (S*M) which is fixed by the flow (i.e. fo G; = f almost
everywhere), it must be that fis constant almost everywhere.

23



Fundamental theorem of QE

The fundamental theorem that started the field of Quantum
Ergodicity is the following.

Theorem (Shnirelman 1974, Zelditch 1987, Colin de Verdiére 1985)

Let M be a compact Riemannian manifold. If the geodesic flow on M

is ergodic, then the Laplace-Beltrami operator Ay is quantum
ergodic.

24



Fundamental theorem of QE

The fundamental theorem that started the field of Quantum
Ergodicity is the following.

Theorem (Shnirelman 1974, Zelditch 1987, Colin de Verdiére 1985)

Let M be a compact Riemannian manifold. If the geodesic flow on M

is ergodic, then the Laplace-Beltrami operator Ay is quantum
ergodic.

By now, various extensions of this theorem exist. The common

thread is to study geodesic flow, and translate this into asymptotic
behaviour of eigenfunctions of an operator.

24



Noncommutative geodesic flow

Connes defined geodesic flow on spectral triples in 1996.

Noncommutative cosphere bundle
Let (A, H, D) be a regular spectral triple. Let o; : B(H) — B(H) be
defined by A — e'lPlAe=Pl Then define the C*-algebra

S*A:=C* <g§at(./4) -+ K(H)) /K(’H),

where o descends to an action of R on S*A. If
(A, #H,D) ~ (C>=(M), Ly(S), Ds), then S* A ~ C(S*M) and o is the
geodesic flow.

25



NCG ergodicity

Since ergodicity of the geodesic flow is a measure theoretic
statement, we need to take one more step.

26



NCG ergodicity

Since ergodicity of the geodesic flow is a measure theoretic
statement, we need to take one more step.

L,-cosphere bundle
Let (A, H, D) be a regular spectral triple where D satisfies Weyl's

law. Then
 Tr,(A(1+ D)%)
Tr,,((1+ D?)~%)

(A + K(H)) . A+K(H) e S*A,

defines a finite positive trace on S*A. Then define [,(S*.A) as the
Hilbert space of the GNS representation of S* A corresponding to 7.

The geodesic flow o on S* A descends to a unitary operator on
L,(S*A).

26



NCG QE

We can now naively put forward a definition of ergodic geodesic flow
for spectral triples. Namely, we say that the geodesic flow oy is

ergodic on (A, H, D) if the only o¢-invariant element of L,(S*A) is the
identity.

27



We can now naively put forward a definition of ergodic geodesic flow
for spectral triples. Namely, we say that the geodesic flow oy is
ergodic on (A, H, D) if the only o¢-invariant element of L,(S*A) is the
identity.

NCG QE (H.-McDonald)
Let (A, H, D) be a d-summable regular spectral triple where D
satisfies Weyl's law, and with local Weyl laws. If the geodesic flow
on (A, H,D) is ergodic, then D is quantum ergodic. That is, for every
basis {en}52, of H consisting of eigenvectors of D, there exists a
density one subset / C N such that

_ Tr,(a(1+D?)~%)

lim (ej,ae;) = 7=, acA
J3j—00 Tr,((1+ D?)~2)

27



Thanks for listening!
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